Total-Lagrangian Formulation and Finite-Element Analysis of Highly Flexible Plates and Shells

نویسندگان

  • P. Frank Pai
  • P. FRANK PAI
چکیده

Presented here is a new total-Lagrangian displacement-based finite-element formulation for plates and shells undergoing large displacements and rotations. The theory fully accounts for geometric nonlinearities, general initial curvatures, and extensionality by using Jaumann stress and strain measures, an exact coordinate transformation, and orthogonal virtual rotations. Moreover, transverse shear deformations are accounted for by using a first-order shear deformation theory with shear correction factors obtained by matching the shear strain energy and stress resultants with those of a general layerwise higher-order shear deformation theory. Large static deformations of several different plates and shells under different loading and boundary conditions are obtained. Comparison with available results in the literature reveals that the finite-element model is accurate in predicting large deformations of highly flexible two-dimensional structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration Analysis of Bidirectional Functionally Graded Conical/Cylindrical Shells and Annular Plates on Nonlinear Elastic Foundations, Based on a Unified Differential Transform Analytical Formulation

In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is a...

متن کامل

On the Geometrically Nonlinear Analysis of Composite Axisymmetric Shells

Composite axisymmetric shells have numerous applications; many researchers have taken advantage of the general shell element or the semi-analytical formulation to analyze these structures. The present study is devoted to the nonlinear analysis of composite axisymmetric shells by using a 1D three nodded axisymmetric shell element. Both low and higher-order shear deformations are included in the ...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

Hygrothermal Analysis of Laminated Composite Plates by Using Efficient Higher Order Shear Deformation Theory

Hygrothermal analysis of laminated composite plates has been done by using an efficient higher order shear deformation theory. The stress field derived from hygrothermal fields must be consistent with total strain field in this type of analysis. In the present formulation, the plate model has been implemented with a computationally efficient C0 finite element developed by using consistent strai...

متن کامل

An Efficient Co Finite Element Approach for Bending Analysis of Functionally Graded Ceramic-Metal Skew Shell Panels

In this article, the prominence has been given to study the influence of skew angle on bending response of functionally graded material shell panels under thermo-mechanical environment. Derivation of governing equations is based on the Reddy’s higher-order shear deformation theory and Sander’s kinematic equations. To circumvent the problem of C1 continuity requirement coupled with the finite el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005